

Optical System Science and Technology; Computational Challenges and Development

ESTC 2006

Greg Moore,
Mike Chainyk, Claus Hoff, Eric Larour,
Marie Levine, John Schiermeier

27 June 2006

Outline

- Introduction: Motivation and Challenges
- Solution Approach and Enabling Technologies
- Development Effort Status
- Examples
- Summary

Introduction

Case Study: Terrestrial Planet Finder – Coronagraph; 20° Dither Analysis

CAD model

Analysis model: Thermal, mechanical, optical (common mesh)

Transient WFE decomposed into 15 Zernikes vs. Reqmts.

Transient Contrast after 20deg dither

Speckle Removal for Planet Detection

Introduction

Large Aperture Multi-Scale Issues:

Long duration events requiring implicit solvers

System Level

Thermal-Structural-Optical Aberrations Stability, Performance, System Control, Design Optimization

Component Level

Thermal-Structural-Optical-Control Nonlinear Continuum Mechanics

Test C

Test Correlation with Data Acquisition and Code Validation with Experiments

Molecular Level

Conversion of Microscale
Mechanics Tests & Simulations
into Continuum Mechanics
Models

Solution Approach

Description

Development of advanced capabilities for the analysis-driven design of large aperture deployable systems

Objectives

- Enable "integrated modeling" by providing fundamentally-integrated thermal, structural, and optical aberration analytic capabilities. General purpose
- Implement computationally efficient methodologies for analysis and design optimization study purposes
- Provide an object-based, extensible platform for advanced methods development and research
- Deploy process improvement to organization and to projects (including benchmarking, documentation, and support)

Integrated analysis capability facilitates development of detailed system-level model ...

Propagates thermal, structural & dynamic effects down to optical elements and mounts ...

And computes aberrations from which optical merit functions & sensitivity matrices can be assessed and optimized...

Solution Approach

"STOP" Analysis: "Go" Analysis: Geometry Geometry Meshing View factors Meshing Thermal Solver Exchange factors Radiation matrix Cielo Mapping; T(t) Loads generation **Optical Metrics** Structural Analysis **Optical Aberrations Optical Metrics**

Integrated Toolset Status – Where are we Today?

In Practical Terms:

- Model pre-processing
 - Data handling for 500,000+ dof contractor-supplied Nastran input files (JWST, SIM)
 - Benchmarks to date of >1.2M dof
 - Object-based data schema, code architecture, are fully scalable and extremely robust
 - Models can have thermal, structural, and optical attributes
- Nonlinear transient thermal analyses
 - 5000 dof TPF model under 30 degree rotation in orbit; diffuse exchange, conductance, capacitance, adaptive in time, parallel computing
 - Code stability benchmarking to ~1k time steps
- Other steady state thermal analyses
 - Controlled mirrors of 10,000 dof, TPF-C primary mirror, deployable antennae composite panels

Status (cont.)

- Thermal deformation (static structural analysis)
 - Controlled mirrors, deployable panels (including Matlabbased HDF5 results output for radar code integration)

- Normal modes analysis in structural dynamics
 - Benchmarking of 300,000 dof plate model
 - TPF-C mid-fidelity primary mirror

Optical Aberrations

- Mirror influence functions
- Several hundred actuators as individual subcases

- Parallel Computing
 - Leveraging JPL's cosmos cluster (Dell xeon, 1024 nodes) for parallel nonlinear transient/steady-state heat transfer with radiation exchange

Example: Sunshade Thermal Analysis

TPF-C alternative sunshade study

- 3920 heat transfer surface, 3920 structural elements
 - 3 exchange cavities
 - solar loading, view of space

Steady-State Solution

• 10 iterations

Transient Solution

- 200 adaptive time steps from 0 to 11,560 sec
- 2-3 nonlinear iterations per time step
- 256 processors, ~40 min. run time

Example: Precision Optical Responses

Optical Aberrations:

- Resulting from thermallyinduced (or other) deformations, for any number of optical elements, coordinate systems, analysis subcases
- Provides much-anticipated interface to MACOS, other internal/ external codes
- Computed axially in optical element coordinate system, on n_yx m_x grid, and output in interferogram file format
- Fully data-driven, integrated with other Nastran input conventions
- Use as a basis for wavefront error, other optical metrics

Transverse displacement contour plots:

Corresponding aberrations, in interferogram format (256x256 grid):

Summary

Future precision deployable systems will be launched without benefit of full system ground-based testing

Operational scenarios, flight margins will be based in large part on confidence gained through simulation

Precision, optimality, correlation requirements are clearly driving finite element-based computational state of the art

Though significant progress has been made, much remains; recognize we're on the steep part of the learning curve!